Recherche
Mag Décision Achats
S'abonner à la newsletter S'abonner au magazine
En ce moment En ce moment

[Avis d'expert] Pas de RPA qui tienne sans data saines

Publié par le - mis à jour à
[Avis d'expert] Pas de RPA qui tienne sans data saines

Un nombre croissant d'entreprises se tournent vers la robotisation des processus pour supprimer des tâches répétitives et fastidieuses. Mais la technologie RPA ne remplira son rôle supplétif que si elle est envisagée de pair avec une démarche d'assainissement des données, dès la source.

Je m'abonne
  • Imprimer

En matière de RPA (Robotic Process Automation), la plupart des entreprises sont encore au stade de la validation, au travers de POC (proof of concept). Mais si le marché est encore émergent, il monte rapidement en puissance. Et pour cause. Les robots logiciels apportent avec eux la promesse de libérer les opérationnels de tâches chronophages et répétitives en les exécutant à leur place, plus vite et en limitant les erreurs de retranscription.

Les directions financières sont parmi les premières a s'être emparées du sujet pour automatiser certains de leurs processus en middle et back office et améliorer la productivité de leurs centres de services partagés. Selon une étude menée en Europe par ISG (Information Services Group), le taux d'entreprises utilisant la RPA pour dix processus métiers ou plus devrait doubler d'ici 2020. Au delà de la direction financière, les fonctions les plus impactées seraient le service client et le traitement des commandes, les achats, la logistique et la chaîne d'approvisionnement.

La RPA, performante mais pas magique

Pourquoi cet engouement ? Outre qu'il ne dort jamais, le robot est réputé exécuter les tâches sans erreur ou presque, permettant à l'humain de libérer du temps pour des tâches à plus forte valeur ajoutée. Mais sont-ils 100 % plus sûrs ? La réponse est non. Si performante apparaît-elle, la technologie RPA n'est pas une baguette magique. Dénuée de toute fonction cognitive, elle ne fait qu'exécuter les instructions pour lesquelles elle est programmée. Les robots logiciels ne sont en particulier pas conçus pour jauger la qualité des informations qu'on leur donne à ingérer. S'ils sont alimentés avec de mauvaises données, le résultat en sortie de processus sera mécaniquement faussé. Produit plus vite, mais faussé. Il en est de même si le processus de création des données est lui-même facteur d'erreur : l'exécution sera ... exactement fausse !

"Garbage in, garbage out" disent nos amis anglo-saxons. Si ce qui entre est mauvais, ce qui sort le sera aussi. A quoi bon automatiser la création de compte clients, si l'adresse client a été, à l'origine, mal saisie dans le système d'information de l'entreprise, ou si le client existe déjà ?

Le constater ne remet pas en cause les projets de robotisation. Mais leur mise en oeuvre doit s'envisager de pair avec un travail de fond sur l'assainissement des données, à la source. Or, cette question de la qualité des données est encore trop rarement une priorité des entreprises, pour l'heure plutôt tournées vers les enjeux de RGPD (protection des données) et de sécurité. Pourtant, 25 % des données contenues dans un ERP seraient de mauvaise qualité. Et plus les données se massifient et se renouvellent, plus le risque d'occurrence d'anomalies devient élevé.

Alors que la data devient, dans nos entreprises digitalisées, une matière première aussi importante que le produit physique commercialisé, nous sommes loin, avec ces 25%, des standards recherchés dans le monde réel, industriel. La méthode Six Sigma, par exemple, encourage à tendre vers le zéro défaut, dans une régularité absolue, avec un taux de défaut de 3,4 pour un million d'unités produites. Si les instruments de mesure précise existaient, on constaterait que la gestion des données engendre, elle, un taux de rebut sans doute mille fois supérieur.

Lire la suite en page 2: Un processus orienté sur la qualité des données


 
Je m'abonne

NEWSLETTER | Abonnez-vous pour recevoir nos meilleurs articles

La rédaction vous recommande

Retour haut de page